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Problem

A standard risk measure is the value-at-risk. This risk measure is given
by a quantile of the profit & loss distribution.Losses and Profits

Profit & Loss Distribution (P&L)
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Density of X together with VaR at the level α = 0.05. Source: McNeil, Frey, Embrechts Quantitative
Risk Management.
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Assume that the profit of a portfolio, say X , is normally distributed with
mean µ and variance σ2. Then the value-at-risk at level α is given by

VaRα (X ) =−
(

µ + σΦ−1(α)
)
.

But in practice, µ and σ are unknown and have to be estimated. In this
regard, let us consider the simplest case: we have an i.i.d. sample
X1, . . . ,Xn =: X at hand.
Efficient estimators of µ and σ are at hand:

µ̂n = X̄ , σ̂n = σ̄ (X ) =
√

1
n−1

n
∑
i=1

(Xi − X̄ )2. (1)

Common practice is to use the plug-in estimator

VaRplugin
α :=−

(
µ̂n + σ̂nΦ−1(α)

)
.

Can this be efficient?
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Motivation from Backtesting

Let us perform a standard backtesting-procedure, i.e. we run several
simulations, estimate the value-at-risk and check if the percentage of
unsufficient capital does not exceed 5%.
We show estimates of VaR0.05 with the plug-in procedure. The data is
from NASDAQ100 and from a sample from normally distributed random
variable with mean and variance fitted to the NASDAQ data (”Simulated”,
second column), both for 4.000 data points→ we would expect 200
exceedances.
Exceeds reports the number of exceptions in the sample, where the
actual loss exceeded the risk estimate.

Estimator NASDAQ Simulated
exceeds percentage exceeds percentage

Plug-in ˆVaRplugin
α 241 0.061 221 0.056
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Motivation from Statistics

In the normal case, for known σ , the likelihood-ratio test turns out to be
the Gauss-test, or, equivalently, the confidence-interval is a normal
distribution.
If σ is unknown, one utilizes the t-distribution to obtain an efficient test:
consider w.l.o.g. the test for µ = 0 versus µ 6= 0. The standardized test
statistic is

T (X1, . . . ,Xn) =: T (X ) =
√

n X̄
σ̄ (X )

and the test rejects the null hypothesis if

T (X ) > tn(1−α).

Shouldn’t there be a similar adjustment towards the t-distribution in the
estimator for VaR?
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Our findings suggest that the estimator is biased. In a statistical sense !
Our goal is to analyse this problem and give a new notion of
unbiasedness in an economic sense.
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Measuring risk

We begin with well-known results on the measurement of risk, see McNeil
et al. (2005).

Let (Ω,A ) be a measurable space and (Pθ : θ ∈Θ) be a family of
probability measures.
For simplicity, we assume that the measures Pθ are equivalent, such
that their null-sets coincide.
For the estimation, we assume that we have a sample X1,X2, . . . ,Xn of
observations at hand.
A risk measure ρ is a mapping from L0 to R∪{+∞}.
The value ρ(X ) is a quantification of risk for a future position: it is the
amount of money one has to add to the position X such that the position
becomes acceptable.
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A priori, the definition of a risk measure is formulated without any relation to
the underlying probability. However, in most practical applications one
typically considers law-invariant risk-measures. Denote by D the convex
space of cumulative distribution functions of real-valued random variables.

Definition

The family of risk-measures (ρθ )θ∈Θ is called law-invariant, if there exists a
function R : D → R∪{+∞} such that for all θ ∈Θ and X ∈ L0

ρθ (X ) = R(FX (θ )), (2)

FX (θ ) = Pθ (X ≤ ·) denoting the cumulative distribution function of X under the
parameter θ .
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Estimation

We aim at estimating the risk of the future position when θ ∈Θ is unknown
and needs to be estimated from a data sample x1, . . . ,xn.

Definition

An estimator of a risk measure is a Borel function ρ̂n : Rn→ R∪{+∞}.

Sometimes we will call ρ̂n also risk estimator.
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The following definition introduces an economically motivated formulation of
unbiasedness.

Definition

The estimator ρ̂n is called unbiased for ρ(X ), if for all θ ∈Θ,

ρθ (X + ρ̂n) = 0. (3)

If the estimator is unbiased, adding the estimated amount of risk capital
ρ̂n to the position X makes the position X + ρ̂n acceptable under all
possible scenarios θ ∈Θ.
Requiring equality in Equation (3) ensures that the estimated capital is
not too high.
Except for the i.i.d. case, the distribution of X + ρ̂n does also depends on
the dependence structure of X ,X1, . . . ,Xn and not only on the (marginal)
laws.
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Relation to the statistical definition of unbiasedness

Our Definition differs from unbiasedness in the statistical sense!
The estimator ρ̂n is called statistically unbiased, if

Eθ [ρ̂n] = ρθ (X ), for all θ ∈Θ, (4)

One point why the statistical unbiasedness is not reasonable here is that
it does not behave well in various backtesting or stress-testing
procedures.
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Relation to level adjustment

A further alternative is to adjust the level α, see Frank (2016) and
Francioni and Herzog (2012).
An existing estimator depending continuously on α can always be
trimmed to match exactly the unbiased estimator. However, the adjusted
α will typically depend on n and the sample (Example to follow)!
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Unbiased estimation of value-at-risk under normality

Let X ∼N (θ1,θ2
2 ) and denote θ = (θ1,θ1) ∈Θ = R×R>0.

The value-at-risk is

ρθ (X ) = inf{x ∈ R : Pθ [X + x < 0]≤ α}, θ ∈Θ, (5)

Unbiasedness as defined in Equation (3) is equivalent to

Pθ [X + ρ̂ < 0] = α, for all θ ∈Θ. (6)

We define estimator ρ̂, as

ρ̂(x1, . . . ,xn) =−x̄− σ̄ (x)
√

n +1
n t−1n−1(α), (7)
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This estimator is unbiased: first, note that

X + ρ̂ = X − X̄ − σ̄ (X )
√

n +1
n t−1n−1(α)≤ 0

⇔
√

n
n +1 ·

X − X̄
σ̄ (X ) ≤ t−1n−1(α).

Using the fact that X , X̄ and σ̄ (X ) are independent for any θ ∈Θ , we obtain

T :=
√

n
n +1 ·

X − X̄
σ̄ (X ) = X − X̄√

n+1
n θ2

·

√√√√ n−1

∑
n
i=1( Xi−X̄

θ2
)2
∼ tn−1.

Thus, the random variable T is a pivotal quantity and

Pθ [X + ρ̂ < 0] = Pθ [T < qtn−1 (α)] = α.
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Let us elaborate a little bit on the difference between the plug-in and the
unbiased estimator.

ˆVaRu
α =−x̄− σ̄ (x)

√
n +1

n t−1n−1(α)

ˆVaRplugin
α =−x̄− σ̄ (x)Φ−1(α)

The percentage of additional capital over the mean needed for the unbiased
estimator is given by √

n +1
n

t−1n−1(α)
Φ−1(α)

. (8)
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A working example: the Black-Scholes model

Assume that
St = S0exp

(
µt + σ

√
tξ
)
,

with ξ ∼N (0,1). (Note that this is the portfolio position).
The estimators are (assuming i.i.d. data to St and using log-differences)

VaRplugin
α =−S0

(
eX̄+σ̄Φ−1(α)−1

)
VaRplugin

α =−S0
(

eX̄+σ̄
√

n+1/n t−1n−1(α)−1
)

This time, the percentage of additional capital needed will also depend
on mean and variance!
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Unbiased estimation of expected shortfall under normality

We continue in the previous setting,
The expected shortfall at level α under a continuous distribution is

ρθ (X ) = Eθ [−X |X ≤ qX (θ ,α)],

where qX (θ ,α) is α-quantile of X under Pθ .
We consider estimators of the form

ρ̂(x1, . . . ,xn) =−x̄− σ̄ (x)an, (9)

for some (an)n∈N , where an ∈ R.
We can show that there exists an which makes ρ̂ unbiased. This an can
easily be computed numerically.
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Empirical study

It is the aim of this section to analyse the performance of selected
estimators on various sets of real market data (Market) as well as on
simulated data (Simulated). Our focus is on the practically most relevant
risk measures, VaR and ES.
The market data we use are returns from the data library Fama and
French (2015), containing returns of 25 portfolios formed on
book-to-market and operating profitability in the period from 27.01.2005
to 01.01.2015. We obtain exactly 2500 observations for each portfolio.
The sample is split into 50 separate subsets, each consisting of 50
consecutive trading days. For i = 1,2, . . . ,49, we estimate the risk
measure using the i-th subset and test it’s adequacy on (i +1)-th subset.
The simulation study uses i.i.d. normally distributed random variables
whose mean and variance was fitted to each of the 25 portfolios. The
sample size was set to 2500 for each set of parameters. In this way we
are able to exclude difficulties due to dependencies in the data or bad
model fit.
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Backtesting VaR

We considered the unbiased estimator ˆVaRu
α , the empirical sample

quantile ˆVaRemp
α , the modified Cornish-Fisher estimator ˆVaRCF

α , the
plug-in estimator ˆVaRnorm

α and the GPD plug-in estimator1 ˆVaRGPD
α .

ˆVaRemp
α (x) :=−

(
x(bhc) + (h−bhc)(x(bh+1c)−x(bhc))

)
,

ˆVaRCF
α (x) :=−

(
x̄ + σ̄ (x)Z̄α

CF (x)
)
,

ˆVaRnorm
α (x) :=−

(
x̄ + σ̄ (x)Φ−1(α)

)
,

ˆVaRGPD
α :=−u + β̂

ξ̂

((
αn
k

)−ξ̂

−1
)
,

ˆVaRu
α (x1, . . . ,xn) :=−

(
x̄ + σ̄ (x)

√
n +1

n t−1n−1(α)
)
,

where x(k) is the k-th order statistic of x = (x1, . . . ,xn), the value bzc denotes the integer part of z ∈R,
h = α(n−1) +1, Φ denotes the cumulative distribution function of the standard normal distribution
and Z̄α

CF is a standard Cornish-Fisher α-quantile estimator.

1For each portfolio, we set the threshold value u to match the 0.7-empirical quantile of the
corresponding sample.
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Tabelle: Top: the results for portfolios in the period from 27.01.2005 to 01.01.2015 from the Fama
& French dataset. Bottom: the results on simulated Gaussian data. We perform the standard
backtest, splitting into intervals of length 50 and computing average rate of exceptions.

Type of data: MARKET

Portfolio Estimator type

ˆVaRemp
α

ˆVaRnorm
α

ˆVaRCF
α

ˆVaRGPD
α

ˆVaRu
α

LoBM.LoOP 0.071 0.073 0.067 0.067 0.069
BM1.OP2 0.076 0.070 0.069 0.069 0.065
BM1.OP3 0.071 0.064 0.063 0.064 0.061
BM1.OP4 0.069 0.071 0.067 0.067 0.068
LoBM.HiOP 0.071 0.071 0.070 0.067 0.068
· · · · · · · · · · · · · · ·

mean 0.073 0.071 0.068 0.067 0.067

Type of data: SIMULATED

ˆVaRemp
α

ˆVaRnorm
α

ˆVaRCF
α

ˆVaRGPD
α

ˆVaRu
α

LoBM.LoOP 0.065 0.057 0.055 0.056 0.051
BM1.OP2 0.064 0.053 0.053 0.053 0.050
BM1.OP3 0.069 0.058 0.058 0.060 0.052
BM1.OP4 0.069 0.057 0.058 0.062 0.053
LoBM.HiOP 0.060 0.054 0.053 0.056 0.047
· · · · · · · · · · · · · · ·

mean 0.066 0.057 0.057 0.058 0.051

Lugano, 2017 Thorsten Schmidt – Unbiased estimation of risk measures 21 / 31



Backtesting Expected Shortfall

In this example we will use the same dataset, but instead of VaR at level 5%
we consider ES at level 10%. We consider

ÊSemp
α (x) :=−

(
∑

n
i=1 xi1{xi + ˆVaRemp

α (x)<0}
∑

n
i=11{xi + ˆVaRemp

α (x)<0}

)
,

ÊSCFα (x) :=−
(

x̄ + σ̄ (x)C(Z̄α

CF (x))
)
,

ÊSnormα (x) :=−
(

x̄ + σ̄ (x) φ (Φ−1(α))
1−α

)
,

ÊSGPDα (x) :=
ˆVaRemp

α (x)
1− ξ̂

+ β̂ − ξ̂u
1− ξ̂

,

Let the Gaussian unbiased Expected Shortfall estimator be

ÊSuα (x) :=− (x̄− σ̄ (x)an) , (10)

where an was computed numerically.

Note that the non-elicitability of ES is directly visible !
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For the backtest we follow Test 2 suggested in Acerbi and Székely (2014)
utilizing the 50 separate subsets of our data denoted by (x i

1, . . . ,x
i
50).

The test statistic for the backtest is given by

Z := 1
49

49
∑
i=1

 1
50

50
∑
j=1

x i+1
j 1

{x i+1
j + ˆVaRi

α<0}

α ÊSi
α

+1. (11)

The results of our backtest are presented in Table 2.
While 0 would be optimal, negative values of the test statistic Z
correspond to underestimtion of risk of the considered estimator.
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Tabelle: The results of our backtest. Note that while 0 would be optimal, negative
values of the test statistic Z correspond to underestimtion of risk.

Type of data: MARKET

Portfolio Estimator type

ESemp
α ESnormα ESCFα ESGPDα ESuα

LoBM.LoOP -0.357 -0.393 -0.325 -0.302 -0.331
BM1.OP2 -0.428 -0.303 -0.338 -0.335 -0.235
BM1.OP3 -0.327 -0.322 -0.336 -0.295 -0.254
BM1.OP4 -0.326 -0.354 -0.348 -0.282 -0.272
LoBM.HiOP -0.424 -0.421 -0.371 -0.335 -0.331

mean -0.374 -0.363 -0.339 -0.308 -0.290

Type of data: SIMULATED

ESemp
α ESnormα ESCFα ESGPDα ESuα

LoBM.LoOP -0.177 -0.073 -0.077 -0.104 -0.005
BM1.OP2 -0.143 -0.083 -0.069 -0.074 -0.014
BM1.OP3 -0.220 -0.084 -0.100 -0.157 -0.019
BM1.OP4 -0.224 -0.086 -0.101 -0.150 -0.012
LoBM.HiOP -0.183 -0.082 -0.072 -0.098 -0.016

mean -0.174 -0.101 -0.103 -0.109 -0.030
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Elicitability

The remarkable article Gneiting (2011) critically reviews the evaluation of
point forecasts: a good performance in backtesting might not necessarily
imply that a given estimator is good.

Example (Perfect backtesting performance)

Assume a sample (xi )i=1,...,200 being centred with support [−1,1]. Then,
choosing 190 times the value 1 and 10 times the value −1 gives a perfect
backtesting performance (for α = 0.05) when measured only by the
exceedance rate.

Elicitability will lead to a backtesting concept which will remedy this issue.
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A scoring function is a mapping which compares two values of risk
measures: S(x,y) measures the deviation from the forecast x to the
realization y; the squared error S(x,y) = (x−y)2 being a standard
example.
The scoring function S is called consistent for the law-invariant risk
measure R relative to the class {FX (θ ) : θ ∈Θ}, if

Eθ [S(R(FX (θ )),Y )]≤ Eθ [S(r,Y )] (12)

for all θ ∈Θ and all r ∈ R∪+∞; here Eθ denotes the expectation under
which the random variable Y has distribution FX (θ ).
The scoring function is called strictly consistent if it is consistent and
equality in (12) implies that r = R(FX (θ )). For example, the squared error
is strictly consistent relative to the class of probability measures of finite
second moment.
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Definition

The risk measure R is called elicitable relative to {FX (θ ) : θ ∈Θ}, if there
exists a scoring function that is strictly consistent.

The prime example in our context is VaRα (Value-at-Risk at level α). A
possible specification of a scoring function is given by

S(x,y) = (1{x≥y}−α)(x−y). (13)

Evaluating with the performance criterion

S̄ = 1
n

n
∑
i=1

S(xi ,yi ), (14)

denoting by x1, . . . ,xn the forecasts and by y1, . . . ,yn the verifying
observations, guarantees that the optimal point forecast outperforms all other
estimators.
This in turn allows to identify flawed estimators like in Example 4.
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Backtesting using scoring functions

Running the backtests with scoring functions indeed shows that the
unbiased estimators also outperform the other estimators with respect to
this measures.
For expected shortfall the situation is more complicated: it is only
elicitable jointly with value-at-risk. Still, in this setting the unbiased
estimators outperform the other estimators.
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Conclusion

We studied the estimation of risk, with a particular view on unbiased
estimators and backtesting.
The new notion of unbiasedness introduced is motivated from economic
principles rather than from statistical reasoning, which links this concept
to a better performance in backtesting.
Some unbiased estimators, for example the unbiased estimator for
value-at-risk in the Gaussian case, can be computed in closed form
while for many other cases numerical methods are available.
A small empirical analysis underlines the outperformance of the
unbiased estimators with respect to standard backtesting measures.
The extension to GPD-distributions is the next step.

The paper is available on SSRN: https://ssrn.com/abstract=2890034
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Many thanks for your attention !
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